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Abstract
The formalism of resonances in quantum chaos is improved by using
conveniently defined creation–annihilation operators. With these operators at
hand, we are able to construct transverse excited resonances at a given Bohr-
quantized energy. Then, by requiring minimum energy dispersion we obtain
solutions in terms of even or odd transverse excitations. These wavefunctions,
which are constructed in the vicinity of a periodic orbit with maximum energy
localization, provide a precise definition of a scar function. These scar functions
acquire, in the semiclassical limit, the hyperbolic structure characteristic of
unstable periodic orbits.

PACS numbers: 0545M, 0365S, 4505

1. Introduction

A semiclassical theory of short periodic orbits (POs) has recently been developed [1, 2]. This
formalism allows us to obtain all the quantum information of a chaotic Hamiltonian system
in terms of a very small number (which increases at most linearly with the Heisenberg time)
of short POs. This drastic reduction in the number of required POs, with respect to the trace
formula [3–5], is possible by the evaluation of interaction between POs.

The first step of the theory is the construction of wavefunctions (highly localized in energy)
living in the neighbourhood of a PO. In [1, 2] a construction without transverse excitations
is presented; they are the optimal ones in the low-energy region. These wavefunctions,
the so-called resonances, are essentially constructed with a transverse Gaussian wavepacket
(conveniently selected) evolving along the orbit with a modified transverse motion. This
motion, which results after dropping the pure hyperbolic one, describes a bunch of POs
surrounding the central orbit. Under this motion, the eigenvectors of the monodromy matrix
evolve without the exponential contraction–dilation characteristic of hyperbolic motions, and
after one period they return over themselves (up to a minus sign). In the same way, the
transverse wavepacket returns over itself differing at most by one phase: the accumulated
phase along the orbit. For some energies, the so-called Bohr-quantized energies, this phase
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is an integral multiple of 2π , and the given functions (being continuous) define the required
resonances.

In this paper we are going to show that as the energy increases, it is possible to incorporate
transverse excitations into the resonances. The construction of such structures is made simple
and systematic by the introduction of creation–annihilation operators acting over the above-
mentioned resonances (and for this reason we will also call the resonances without transverse
excitations vacuum states). Then, at a given energy, we have a basis of resonances constructed
with the same PO. Moreover, the semiclassical Hamiltonian operator acting over such a set
acquires a simple expression in terms of the creation–annihilation operators (see equation (36)).
With these ingredients at hand, we are able to minimize the energy dispersion explicitly. The
solutions obtained in this way bear a close resemblance to previous theoretical and numerical
works.

In 1988, Bogomolny [6] represented an averaged squared wavefunction as the sum over
a finite number of POs. The contribution of each PO, the so-called scar [7] contribution,
although not very amenable to numerical tests, has the essential elements characteristic of
hyperbolic structures. In 1989, Berry [8] presented an improved version of Bogomolny’s
ideas working in phase space; he obtained the spectral Wigner function for each scar
contribution. The two authors approximate the motion in the neighbourhood of a PO by
a linear map on a transverse Poincaré section. In this respect, on each transverse section
to the PO their expressions are approximations (depending on the representation used) to the
eigenfunctions of a hyperbolic quadratic Hamiltonian. These eigenfunctions were investigated
by Nonnenmacher and Voros [9] in the case of one degree of freedom. We stress that these
solutions are not normalizable because the transverse direction has an infinite range. Of course,
this is not the case in a bounded system where a finite characteristic length defines its size at
a given energy. On the other hand, each PO has a more restrictive length associated with the
region where the linear motion works. In any case, for generic unstable POs only a limited
transverse region can be considered.

As we mentioned above, a resonance with minimum dispersion is obtained as a sum of
resonances with transverse excitations. On each Poincaré section transverse to a PO, this set is
restricted to the first excitations (the number depending on the associated transverse region) of a
transverse Gaussian wavepacket. When the number of admitted excitations goes to infinity (that
is, when the energy goes to infinity or h̄ goes to zero), the dispersion goes to zero. Moreover,
the minimum-dispersion resonances (restricted to the section) go to the eigenfunctions of a
hyperbolic quadratic Hamiltonian. However, the obtained solutions are normalized and well
behaved. For this reason, they are representation independent and although we give them in
coordinate representation, it is easy to obtain their Wigner or Husimi representation.

de Polavieja et al [10] constructed numerically localized wavefunctions on POs. They are
a linear combination of eigenfunctions of the system where the coefficients are their overlaps
with a wavepacket located in the vicinity of a point of the PO. Moreover, the coefficients are
modulated with a Gaussian function in order to impose low-energy dispersion. These localized
structures are very similar to the minimum-dispersion resonances, with even transverse
excitations, presented in this paper. Another numerical construction with similar results is
presented in [11]. Localized structures on short POs are unveiled by performing successive
orthogonal transformations of the eigenfunctions to remove their parametric interaction.
Finally, Kaplan and Heller [12] successfully computed localized structures in a modified
version of the baker’s map. Again, their functions are related to the minimum-dispersion
resonances (restricted to a surface of section) with even transverse excitations. Following the
above-mentioned references, we will also call the minimum-dispersion resonances constructed
in this article scar functions. In fact, the constructed wavefunctions provide a clear and precise
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definition of a scar function, and this is the required tool for quantifying scarring of individual
states.

This paper is organized as follows. Section 2 is devoted to the classical motion in the
vicinity of unstable POs. Though only a part of the material of this section is new, the
presentation is non-traditional and it is well suited to the semiclassical construction developed
in other sections. In section 3 we considerably extend the presentation given in [1] for
the construction of resonances without transverse excitations, emphasizing the geometrical
interpretation of the construction. The next section contains the construction of resonances
with transverse excitations and the evaluation of the semiclassical Hamiltonian operator, in
terms of creation–annihilation operators. The explicit form of resonances with minimum
energy dispersion is given in section 5. Section 6 is dedicated to the comparison of the
obtained semiclassical results with numerical computations. The last section is devoted to
final remarks and conclusions.

2. Classical dynamics in the neighbourhood of unstable periodic orbits

In this paper we are going to focus our attention on autonomous Hamiltonian systems with two
degrees of freedom. However, the developed ideas can be extended to more degrees in an almost
straightforward way. The main purpose of this section is to present the classical elements that
we will later need for the semiclassical construction of wavefunctions. In particular, we are
going to show that the motion in the neighbourhood of unstable POs can be decomposed into
a periodic one and a pure hyperbolic motion; that is, the Floquet theorem.

Let γ be an unstable PO isolated on each energy surface. In other words, the dynamics
of the system in the vicinity of the trajectory has hyperbolic structure, the hyperbola branches
being defined by the stable and unstable manifold tangential directions (these directions will
be called stable and unstable manifolds for simplicity).

In order to apply the semiclassical approximations involved in the present paper we only
need two conditions to be satisfied by the classical motion. These are the previously mentioned
hyperbolic structure in the neighbourhood of the orbit and that the orbit itself be smooth by
pieces in configuration space. Then, we introduce a curvilinear coordinate system choosing
the x axis along the trajectory and the y axis perpendicular to it at x. We select y = 0 on γ
in such a way that x defines the points on the trajectory; that is, px = pγx (x) and py = pγy (x)
on γ . At a given point on γ , we consider the transverse plane, in phase space, defined by
a constant value of x and px . Points in this plane will be characterized by a displacement
(δy ≡ y, δpy ≡ py − pγy ) of the transverse coordinates with respect to their values on γ .
Notice that in general the point (δy, δpy) does not live in the energy shell defined by γ ; the
difference is given by δE = −ṗy δy (because ẏ = 0 on γ ). In particular, δE = 0 for kinetic
plus potential energy Hamiltonians.

The projection of the velocity field for the displacements [13] onto the transverse plane is
given by

ẋ(x)
dδy

dx
(x) = ∂2H

∂y∂py
(x)δy(x) +

∂2H

∂py
2 (x)δpy(x)

−ẋ(x)dδpy
dx

(x) = ∂2H

∂y2 (x)δy(x) +
∂2H

∂py∂y
(x)δpy(x)

(1)

where H is the classical Hamiltonian and ẋ is the time variation of x on γ . Of course,
this projected velocity field does not give the right evolution. However, the semiclassical
construction we are going to describe in the next section only requires the evolution of a
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Figure 1. Evolution of the vectors ξs and ξu, tangential to the stable and unstable manifolds
respectively. (a) Eigenvectors of the monodromy matrix. (b) Evolved eigenvectors at x where the
fact that the angle between them is less than π is explicitly noted.

transverse wavepacket for an infinitesimal time. In this respect, the previous equations provide
the relevant motion.

As will be discussed later in this section, we need to identify the pure hyperbolic transverse
motion. For this reason we are going to work with global solutions of the motion. By integration
of the previous equations there results a symplectic matrixM(x)which gives the displacement
(y(x), py(x)) (in the following we will eliminate the symbol δ for the displacements in order
to simplify the expressions) at x from an initial displacement (y, py) at x = 0(

y(x)

py(x)

)
=

(
m11(x) m12(x)

m21(x) m22(x)

) (
y

py

)
.

The evolution along the complete orbit is described by the matrix M(L), L being the length
of the orbit. This matrix is the Poincaré return map or transverse monodromy matrix.
Its eigenvectors ξs and ξu define the previously mentioned stable and unstable directions
respectively. The eigenvalue corresponding to ξu is real with absolute value exp (λL). The
number λ is the orbit’s Lyapunov exponent, measured in units of [length−1].

The evolution of ξu along the orbit is described by ξ̃u(x) = M(x)ξu. While evolving, this
vector dilates and rotates in the y–py plane. Let µ be the total number of half turns made by
ξ̃u(x) during its evolution along the orbit (µ is positive for rotations in the clockwise sense).
For even µ, the vector returns to the initial point (x = L ≡ 0) on the trajectory with the same
direction and sense, and the eigenvalue of ξu is positive. For odd µ, its sense changes and the
eigenvalue is negative (in this case the motion is called hyperbolic with reflection). We can
write

ξ̃u(L) = (−1)µeλLξu. (2)

The vector ξ̃s(x) = M(x) ξs contracts and rotates following ξ̃u(x). This rotation is not rigid;
the angle between the stable and unstable vectors varies during the evolution. However, this
angle is always less than one half turn (see figure 1) because the vectors ξ̃u and ξ̃s are continuous
functions of x and their directions never coincide; that is, the symplectic area ξ̃u(x) ∧ ξ̃s(x)

has a constant non-null value. Then, as the final cumulative rotation of the stable manifold is
an integer number of half turns, this number is also µ and we have

ξ̃s(L) = (−1)µe−λLξs. (3)

Since the stable and unstable manifolds rotate during their evolution along the trajectory,
it is possible to find values x0 of x where these directions are symmetrical with respect to
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Figure 2. Axes ξu and ξs on the unstable and stable manifolds respectively, such that their
projections on y and py are equal in absolute value. (a) When the slope of ξu is positive. (b) When
it is negative.

the axes, that is where their slopes in the y–py plane are the same in absolute value but with
opposite sign. Following the rotations of the manifolds we can find at least 2µ points (exactly
2µ if the swept angles are monotonic functions of x; this is the case for kinetic plus potential
energy Hamiltonians [14]) on the orbit satisfying that condition. These points are not canonical
invariants as µ or λ are; however, they are invariant under physical unit changes. As a matter
of fact, the wave mechanics that we want to describe behaves in the same way.

By finding one of these points we will be able to define the resonances that will be
introduced in the next section. Actually, the existence of such points is not essential for
the semiclassical construction. However the decomposition of the transverse motion, into a
periodic and a hyperbolic one, requires the definition of a function along the orbit (the function
f (x) in equation (7)), and the mentioned points provide an efficient tool for such a definition.

The return map Mx0 starting at x = x0 (it describes the linear evolution of the transverse
coordinates at x = x0, after one period) is related toM(x) as follows:

Mx0 = M(x0)M(L)M(x0)
−1. (4)

Moreover, the eigenvectors of Mx0 acquire the form (y, py) = (a,±b) with a, b �= 0 (the
symmetrical condition) if and only if their diagonal elements are equal. Then, by using this
condition and equation (4) it is easy to find x0. In systems with time reversal, turning points
(the orbit being a libration) satisfy such a condition.

We select the originx = 0 at one of these points. With this choice and using the eigenvalues
given in equations (2) and (3), the monodromy matrixM(L) acquires the form

M(L) = (−1)µ
(

cosh(λL) sinh(λL)/ tan(ϕ)
sinh(λL) tan(ϕ) cosh(λL)

)
(5)

where tan(ϕ) in units of [momentum/length] defines the slope of the unstable manifold in the
plane y–py (where the slope of the stable manifold is − tan(ϕ)). According to the symmetrical
condition, the slope is not null.

In general it is impossible to compare vectors living in the plane y–py because the axes
have different units. However, when the directions are symmetrical with respect to the axes it
is only necessary to compare one component. Then, we change to new axes ξu and ξs on the
unstable and stable manifolds respectively, such that their projections on each axis are equal
in absolute value. The symplectic matrix B transforming coordinates from the new axes into
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the old ones and its inverse are

B = (ξuξs) = 1√
2

(
1/α −s/α
sα α

)
B−1 = 1√

2

(
α s/α

−sα 1/α

)
(6)

with α = √| tan(ϕ)| and s = sign(ϕ). We took ξu as the first vector of the new basis by
convention. Figure 2 shows the two possibilities according to the sign of ϕ. A straightforward
calculation using equations (5) and (6) shows that B−1M(L)B = (−1)µ exp(λLD), withD a
diagonal matrix of elements d11 = 1 and d22 = −1.

Now, we decompose M(x) into a periodic matrix F(x) describing the evolution of
the manifolds, and a matrix (depending in a simple way on x) describing the exponential
contraction–dilation along the manifolds,

M(x) = F(x) exp[f (x)λK] (7)

where

K ≡ BDB−1 =
(

0 1/ tan(ϕ)
tan(ϕ) 0

)

verifiesKξu = ξu andKξs = −ξs. f (x) is a real function satisfying f (0) = 0 and f (L) = L.
Equation (7) defines F(x) in terms ofM(x)

F (x) ≡ M(x) exp[−f (x)λK] (8)

and we can see from equation (8) that F(L) = (−1)µ1 by evaluating its action on ξu and
ξs. The function f (x) establishes the relation between the lengths of ξ̃u(x) and ξu whenever
possible. However, the lack of a norm in the plane y–py makes this task in general impossible.
In [1] the function f (x) = x was considered for simplicity; it gives a uniform increment of
the length with x; another possible function is f (x) = t (x)L/T (with T the period of γ )
giving a uniform increment with time (see section 7 for a further discussion about f (x)). We
emphasize that the decomposition given in equation (7) represents the Floquet theorem [15],
which can also be applied to systems with many transverse directions.

From now on, we consider the matrix F(x) by its action on ξu and ξs; that is, we define
the periodic functions yu(x), pu(x), ys(x) and ps(x) as follows:(

yu(x)

pu(x)

)
≡ ξu(x) ≡ F(x)ξu = e−f (x)λM(x)ξu (9)

and (
ys(x)

ps(x)

)
≡ ξs(x) ≡ F(x)ξs = ef (x)λM(x)ξs. (10)

Equations (9) and (10) shows that it is not necessary to evaluate explicitly F(x). On the other
hand, the area preserving property of F(x) guarantees the following condition:

yu(x)ps(x)− ys(x)pu(x) = ξu(x) ∧ ξs(x) = ξu ∧ ξs = J (11)

where J is the selected unit area in the y–py plane (e.g. J = 1 Joule-seg.).
The motion described by the modified symplectic matrixF(x) is very unusual: it is neither

hyperbolic nor elliptic. It is a neutral motion where all the orbits in the neighbourhood of the
central one are also periodic with period L, or 2L if µ is an odd number.

In order to know the error introduced by the modified motion we evaluate the action of the
right classical transverse evolution, for infinitesimal times, on the vectors ξu(x) and ξs(x). The
evolution from x to x + δx is given byMx(δx) = M(x + δx)M(x)−1. So, using equation (8)
and that f (x + δx) 
 f (x) + δxf ′(x), it transpires that

Mx(δx)F (x) 
 F(x + δx) exp[δxf ′(x)λK]
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where the prime denotes differentiation with respect to x. Then, using (9) or (10) we have to
first order in δx

Mx(δx)ξu(x) 
 [1 + δxf ′(x)λ]ξu(x + δx)

Mx(δx)ξs(x) 
 [1 − δxf ′(x)λ]ξs(x + δx).
(12)

The above expressions show clearly the approximation involved in the construction. We have
forced the vector ξu (ξs) to evolve without dilation (contraction) whilst the right evolution
dilates (contracts) the vector at a rate specified by λ.

The classical expressions obtained up to here are enough for the semiclassical construction
developed in the following sections. However, in order to give a local motion point of view
and to provide an alternative way of deriving the semiclassical expressions, we are going to
evaluate the quadratic transverse Hamiltonians Hp and Hh associated with the periodic and to
the pure hyperbolic motion respectively.

Hp must provide the velocity field defined by the periodic functions; for instance

ẏu(x) = ẋ(x)y ′
u(x).

On the other hand, Hh must provide the velocity field obtained from equations (12)

ξ̇u(x) = λẋ(x)f ′(x)ξu(x) and ξ̇s(x) = −λẋ(x)f ′(x)ξs(x).

Then, by requiring the previous relations to be satisfied by Hamilton’s equations and using (11),
we arrive at the following expressions for Hp and Hh (for simplicity the arguments are not
shown):

Hp = ẋ

2J

[
(yuy

′
s − ysy

′
u)p

2
y + 2(psy

′
u − puy

′
s)ypy + (pup

′
s − psp

′
u)y

2
]

(13)

and

Hh = λẋf ′

J

[ − yuysp
2
y + (yups + puys)ypy − pupsy

2
]
. (14)

In conclusion, we have considered a synchronized motion approximation where all the
orbits in the vicinity of the central one move with the same value of x and px . Moreover, by
virtue of Floquet’s theorem we have decomposed the transverse motion into one of periodic
nature and another of hyperbolic character. In this approximation, the Hamiltonian takes the
form

H(x, px, y, py) 
 H‖(x, px) +Hp(y, py, x) +Hh(y, py, x) (15)

with H‖(x, px) ≡ H(x, px, 0, p
γ
y (x)). Observe that ∂H‖/∂x = ∂H/∂x on γ because

∂H/∂py = ẏ = 0 on γ ; that is, the previous definition does not change the velocity field
along the orbit.

The variable x appearing in Hp and Hh plays the role of the time. So, we have an
autonomous one-dimensional Hamiltonian along the orbit and two transverse Hamiltonians
depending periodically on the time. In the following sections we will construct semiclassically
a basis of eigenfunctions for the restricted Hamiltonian H‖ +Hp. Later we will minimize the
dispersion introduced by Hh in that basis.

3. Resonances of periodic orbits. The vacuum state

In this section we are going to construct a family of wavefunctions associated with a given PO
γ . The members of this family are labelled with the number n of excitations along the orbit,
and this number defines the energy of the orbit through the Bohr–Sommerfeld quantization
rule.
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The construction depends only on the motion in the neighbourhood of the orbit; then,
it can be applied to bound or open systems in the same way. Following [1] we call these
wavefunctions resonances. However, in the next section we will show that each one of them
defines a vacuum state over which a finite number of transverse excited states can be created.
So, a resonance of γ will be identified with two numbers (n andm) representing the excitations
along and transverse to the orbit respectively. For this reason, we will also call the resonances
obtained in this section (where m = 0) vacuum states.

In the previous section we have shown that the transverse motion can be decomposed into
a periodic one defined globally by F(x) and locally by Hp(y, py, x), and a pure hyperbolic
motion defined by exp[f (x)λK] orHh(y, py, x) respectively. For the present construction we
will drop the pure hyperbolic motion. Then, we propose as a general recipe for the construction
of eigenfunctions of the resulting motion a product of two functions. One function only depends
on x and it is the semiclassical approximation for the one-dimensional motion along the orbit.
The order h̄−1 is the local plane-wave approximation exp(iS(x)/h̄), with S(x) = ∫ x

0 px dx the
action. The following order in h̄ modifies the amplitude of the wave. The square modulus of
the amplitude at x is proportional to the classical probability of finding the system there. So,
we can write the order h̄0 as

ϕ(x) = eiS(x)/h̄/
√
ẋ. (16)

We emphasize that the previous solution is valid for a general one-dimensional Hamiltonian,
while the most commonly used expression eiS(x)/h̄/

√
px is only applicable to Hamiltonians of

the form kinetic plus potential energy (p2
x/2m + V (x)).

The other required function is

φ̃(x, y) = exp[i(y2/2h̄)P (x)/Q(x)]/
√
Q(x) (17)

whereQ(x) and P(x) are the coordinates of a complex vector constructed with the manifolds(
Q(x) = yu(x) + iys(x)

P (x) = pu(x) + ips(x)

)
≡ ξu(x) + iξs(x) = M(x)B

(
e−f (x)λ

ief (x)λ

)
. (18)

The last relation in equation (18) is obtained from (9) and (10). By virtue of equation (11), the
following normalization condition results for the complex vector:

Q(x)∗P(x)−Q(x)P (x)∗ = 2iξu(x) ∧ ξs(x) = 2iJ. (19)

Then, |Q(x)| > 0 and Im [P(x)/Q(x)] = J/|Q(x)|2 > 0. Thus, for a fixed value of x,
φ̃(x, y) describes a Gaussian wavepacket with centre at y = 0 and momentum py = 0, the
range of the variable y being order

√
h̄. Its Wigner distribution is also a Gaussian function [13]

Wφ̃(x, y, py) = 2

√
πh̄

J
exp

[
− y2J

|Q|2h̄ − (py − αy)2|Q|2
J h̄

]

with α = (Q∗P +QP ∗)/2|Q|2. Using equation (11) it is easy to verify for instance that

Wφ̃[x, yu(x), pu(x)] = 2
√
πh̄/J e−J/h̄

and in general it is possible to show that Wφ̃ is a constant of the motion given by F(x).
Figure 3(a) shows a level curve ofWφ̃ at x = x1, and figure 3(b) shows its new position x = x2

after the evolution. The evolved curve is also a level curve at x2 with the same value ofWφ̃ .

This picture suggests that φ̃(x, y) describes the evolution of the transverse wavepacket
governed byF(x); in fact, using the expressions obtained from wavepacket propagation [13,16]
it is easy to verify this point.
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Figure 3. Level curve with enclosed area A of the Wigner representation Wφ̃ of the resonance.
The ellipse defined by the vectors of the stable and unstable manifolds rotates and changes its form
but preserves this area and corresponds to the same value of Wφ̃ . (a) Representation at a point x1
on the trajectory. (b) Same as before but after the evolution to x2.

Another verification of the accuracy of the proposed solution is obtained directly by
applying the quantum Hamiltonian to it. A straightforward calculation shows that

(Ĥ‖ + Ĥp − E)ϕ(x)φ̃(x, y) = O(h̄2) (20)

where E is the energy of the orbit and Ĥp is the symmetrical quantization (ypy → (ŷp̂y +
p̂y ŷ)/2) of Hp (see (13)). To eliminate the order h̄2 in equation (20) it is necessary to include
terms of order h̄ in the solution. However, this is not the right error order of the solution
because the considered Hamiltonian is an approximation which does not include terms mixing
the variables x and px with the transverse ones (see section 2). We show in appendix A, for
a Hamiltonian of the form kinetic plus potential energy, that the error of the solution is of
order

√
h̄.

The norm of the proposed solution can be obtained to the leading order in h̄ by integrating
the transverse coordinate y (a Gaussian integral), and then the x coordinate. On the other
hand, from now on the phase ofQ(x) will be a very important ingredient in the semiclassical
relations. For these reasons, we are going to use the following normalized expression for the
vacuum state:

ψ(0)γ (x, y) = exp{i[S(x) + y2.(x)/2]/h̄− iφ(x)/2}√
T ẋ[π(h̄/J )|Q(x)|2]1/4

(21)

with .(x) ≡ P(x)/Q(x) and T the period of γ . The superscript indicates the number of
transverse excitations; in this case it ism = 0. φ(x) is the angle swept by the complex number
Q(x) while evolving from 0 to x (the angle is positive in the anticlockwise sense, as usual). It
is simple to verify that the total angle φ(L) swept byQ(x) is equal to the total angle πµ swept
by the manifolds (remember that the angle swept by the manifolds is positive in the clockwise
sense as defined in section 2). Figure 4(a) shows the initial position of the manifolds at x = 0.
The angle ϕ is the one defined in equation (5) and we consider the case where ϕ > 0; the
other case (ϕ < 0) can be treated in the same way. Observe that yu(0) = −ys(0) > 0. Now
the manifolds evolve up to the point x = x1 where yu(x1) = ys(x1) > 0 (see figure 4(b)).
Later, they evolve up to x = x2 where −yu(x2) = ys(x2) > 0 (see figure 4(c)), and so on up
to xN � L. Figure 4(d) shows the corresponding evolution of Q in the complex plane. The
angle φ increases by π/2 each time the system evolves from xi to xi+1. Taking into account
that ξu(L) = (−1)µξu and ξs(L) = (−1)µξs, because the evolution is determined by F(x), it
results that xN = L with N = 2µ.
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Figure 4. Comparison between the evolution of the complex number Q(x) and the rotation of
the manifolds. (a) Symmetric initial position of the manifolds. (b) The manifolds evolve to x1.
(c) Now to x2. (d) Here it is shown how this evolution translates into changes of the numberQ(x).

The wavefunction ψ(0)γ (x, y) will be continuous at x = L if the accumulated phase
around the orbit (S(L)/h̄− φ(L)/2) is an integral multiple of 2π . This condition determines
the admitted energies Eγ of the PO and corresponds to the Bohr–Sommerfeld quantization
rule:

S(L)/h̄− µπ/2 = 2πn (22)

where n = 0, 1, . . . is the number of excitations along γ . Equation (22) predicts the well
known phase loss of π/2 after a smooth potential turning point because in such a case µ
increases by one [18]. Moreover, Creagh et al [19] have shown that µ is equal to the Maslov
index appearing in the trace formula. Actually, this assertion and equation (22) are valid for
smooth potentials. However, in hard-wall potentials it is necessary to add a pure quantum phase
associated with the boundary conditions; this phase does not have a geometrical interpretation
because the classical motion does not take into account whether the wave satisfies Dirichlet or
Neumann boundary conditions.

There is a phase loss of π due to Dirichlet boundary conditions while for Neumann
conditions the phase does not change. On the other hand, equation (22) predicts a phase loss
of π/2 because µ increases by one after a reflection in a hard-wall potential. Then, in order to
give the right changes of phase it is necessary to subtract π/2 for Dirichlet and to add π/2 for
Neumann. In conclusion, to take into account the boundary conditions in hard-wall potentials,
we can rewrite equation (22) as follows:

S(L)/h̄−Nbπ/2 − µπ/2 = 2πn (23)

where Nb is the number of reflections satisfying Dirichlet boundary conditions minus the
number of reflections satisfying Neumann conditions. Perhaps the decomposition given in
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equation (23) (for the change of phase in hard-wall potentials) looks unnecessary. However,
we will show in the next section that it is very convenient when the evolution of excitations of
transverse wavepackets is considered. With this decomposition, the total accumulated phase
given on the left-hand side of equation (23) consists of three contributions: the dynamical
phase, a pure quantum phase introduced by boundary conditions and the topological phase
associated with the rotations of the manifolds.

For kinetic plus potential Hamiltonians, µ is equal to the number of times the unstable (or
stable) manifold becomes parallel to the momentum axis py (which is equal to the maximum
number of conjugated points), plus the number of turning points in smooth potentials, plus the
number of reflections in hard-wall potentials. The manifolds evolve in a continuous way, but
at turning points or reflections they change their sense.

Finally, we stress that the semiclassical construction of eigenfunctions in the
neighbourhood of stable orbits is similar to (21). In this case the initial complex vector
ξu + iξs of equation (18) is replaced by the eigenvector of the monodromy matrix (a complex
vector for stable orbits) satisfying (19). And of course, the evolution of the vector is given by
the transverse symplectic matrix without modifications. Eigenvalues have an error O(h̄) and
eigenfunctions an error O(√h̄). Moreover, it is possible to improve the accuracy by including
transverse excitations [17].

4. Creation–annihilation operators and the pure hyperbolic Hamiltonian

In the previous section we constructed resonances of POs with n excitations along the orbit but
without excitations in the transverse direction; we called them vacuum states. In this section
we are going to construct resonances with transverse excitations. We will be able to do so by
the definition of suitable creation–annihilation operators acting over the vacuum state. Later,
we will show that the semiclassical Hamiltonian, when applied to the constructed resonances,
can be expressed simply in terms of these operators (see equation (36)).

We begin by demanding that the operators satisfy the usual properties

2ψ(0)γ = 0 and [2,2†] = 1. (24)

The general form of2 (at each value of x) is a linear combination of the transverse operators ŷ
and p̂y with the coefficients being complex functions of x; that is,2 = α(x)ŷ − β(x)p̂y [17].
Then, by replacing this expression in (24) and using equation (21), we obtain

α(x)− β(x)P (x)/Q(x) = 0

α(x)∗β(x)− α(x)β(x)∗ = −i/h̄.
(25)

Relations (25) plus equation (19) define α(x) and β(x) up to a global phase (it is not a function
of x).

It is easy to verify that ψ(0)γ (x = 0, y) (see equation (21)) is a real function of y. This
selection is very convenient for the construction of real resonances in systems with time reversal
invariance. Following the same convention, we select the phase of the creation operator in
such a way that ψ(m)γ (x = 0, y) is also real. Then, we obtain the following expressions for the
creation–annihilation operators:

2 = e−iη
(
−i/

√
2J h̄

)
[P(x)ŷ −Q(x)p̂y]

2† = eiη
(

i/
√

2J h̄
)

[P(x)∗ŷ −Q(x)∗p̂y]
(26)

where η is the phase ofQ(x = 0). According to section 2 η = −sπ/4, with s = sign(ϕ) (see
figure 2).
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Using these operators, a resonance with m transverse excitations is obtained by m
applications of 2† onto the vacuum state

ψ(m)γ (x, y) ≡ 2†mψ(0)γ (x, y)/
√
m!. (27)

With this definition, ψ(m)γ is normalized to unity like ψ(0)γ . Moreover, it is possible to prove by
induction (see appendix B) that

ψ(m)γ (x, y) = e−imφ(x)

√
2mm!

Hm

[
y
√
J/h̄

|Q(x)|
]
ψ(0)γ (x, y) (28)

where φ(x) is the phase introduced in equation (21). Hm(z) are the so-called Hermite
polynomials; these are polynomials of mth degree in z, defined by the formula Hm(z) =
(−1)mez

2
dm(e−z2

)/dzm [20]. It is easy to see that ψ(m)γ is also a product of two functions: the
solution for the motion along the orbit (see equation (16)) and m excitations of a transverse
Gaussian wavepacket which evolves following the periodic motion described by F(x) or
Hp(y, py, x).

From equation (28), the accumulated phase of ψ(m)γ around the orbit adds, with respect
to ψ(0)γ (see equation (23)), the contribution −mφ(L) = −mπµ (see section 3) associated
with transverse excitations. Then, the generalized Bohr–Sommerfeld quantization rule,
guaranteeing the continuity of ψ(m)γ at x = L ≡ 0, turns out to be

S(L)/h̄−Nbπ/2 − (m + 1/2)µπ = 2πn. (29)

For even mµ we can rewrite equation (29) as

S(L)/h̄−Nbπ/2 − µπ/2 = 2π(n +mµ/2) (30)

and for odd mµ we can rewrite equation (29) as

S(L)/h̄−Nbπ/2 − 3µπ/2 = 2π [n + (m− 1)µ/2]. (31)

In this way, the right-hand sides of equations (30) and (31) are given by 2π times an integer
number n0, with n0 = 1, 2, . . . .

For even µ (mµ always is even), resonances satisfying n + mµ/2 = n0 have the same
Bohr-quantized energy obtained from equation (30). This set is restricted by two conditions.
The first one is m � 0 according to equation (24). The second condition is associated with
the limited transverse area Alin where the linearized motion works; that is, m < Alin/2πh̄. In
order to give a value forAlin, it is necessary to know the nonlinear motion in the vicinity of the
orbit (see section 7). However, for the shortest POs of the system investigated in section 6.1,
the criterion m < n (in place of the second one) turns out to be satisfactory.

For odd µ, resonances with oddm quantize at the anti-Bohr energy of the even case. That
is, even values of m are treated as stated above (because mµ is even). On the other hand, odd
m resonances satisfying n + (m− 1)µ/2 = n0 have the Bohr-quantized energy obtained from
equation (31) (its value differs from the even case). Moreover, this set is limited by 1 � m < n.

In the following we are going to evaluate the application of the semiclassical Hamiltonian
operator to resonances. First of all, we will show that resonances with transverse excitations
are also eigenfunctions of the restricted Hamiltonian; that is,

(Ĥ‖ + Ĥp)ψ
(m)
γ (x, y) = Eγψ(m)γ (x, y) + O(h̄2). (32)

Taking into account that equation (32) is valid for m = 0, we only need to prove that Ĥ‖ + Ĥp

commutes with 2†, but using equations (11), (13) and (26), it is easy to verify that

[Ĥp,2
†] = −ieiηh̄ẋ d2†/dx
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and

[Ĥ‖,2†]ϕ(x) = (ieiηh̄ẋ d2†/dx + O(h̄2))ϕ(x)

where ϕ(x) is the solution along the orbit (see equation (16)). Now, using equations (15)
and (32), it turns out that

(Ĥ − Eγ )ψ(m)γ (x, y) = Ĥhψ
(m)
γ (x, y) + O(h̄3/2) (33)

where Ĥh is the symmetrical quantization of Hh (see equation (14)). The order h̄2 of
equation (32) is reduced to h̄3/2 in equation (33) because H‖ + Hp + Hh is a synchronized
motion approximation of H (see appendix A).

Reference [1] presented another procedure to obtain the application of the semiclassical
Hamiltonian to the resonances. Starting with the relations in equation (12), the right evolution
transforms the functions Q(x) and P(x) (which were obtained with the modified evolution
F(x)) into

Q̃(x) = Q(x) + δxf ′(x)λQ(x)∗

P̃ (x) = P(x) + δxf ′(x)λP (x)∗.

Then, the application of the semiclassical evolution operator over the resonances gives

Û (δt = δx/ẋ)ψ(m)γ (x, y) = e−iEγ δt/h̄ψ̃ (m)γ (x, y) (34)

where ψ̃(m)γ (x, y) has the same expression as given in (28) but using the transformed functions

Q̃(x) and P̃ (x). Replacing equation (34) in

Ĥ ≡ ih̄ lim
δt→0

[Û (δt)− 1̂]/δt

there results after a straightforward but tedious calculation

(Ĥ − Eγ )ψ(m)γ = −(sh̄ẋf ′λ/2)
[√
(m + 1)(m + 2)ψ(m+2)

γ +
√
(m− 1)mψ(m−2)

γ

]
. (35)

We will not give here the direct demonstration (by induction) of equation (35). Nevertheless,
we will show that equations (35) and (33) are exactly the same. First of all, by using the
definition of ψ(m)γ (see equation (27)) we obtain from equation (35)

Ĥ − Eγ = − sh̄ẋf
′λ

2
(2†2

+22). (36)

Then by writing 2 and 2† in terms of ŷ and p̂y (equation (26)), andQ(x) and P(x) in terms
of yu, ys, pu and ps (equation (18)), there results

Ĥ − Eγ = λẋf ′

J

[
−yuysp̂

2
y + (yups + puys)

ŷp̂y + p̂y ŷ

2
− pupsŷ

2

]
(37)

in accordance with equation (33).

5. Resonances with minimum energy dispersion. The scar function

In the previous section we constructed a basis of resonances (associated with a given PO γ ) at
a particular Bohr–Sommerfeld-quantized energy Eγ . In this section we are going to evaluate
functions with minimum dispersion in that basis, and we will call them scar functions. That
is, a scar function φγ is a linear combination of resonances of γ (normalized to unity for
convenience)

φγ =
N∑
j=0

cjψ
(4j)
γ

/√∑N

j=0
c2
j (38)
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with minimum dispersion σ , where

σ 2 ≡ 〈φγ |(Ĥ − Eγ )2|φγ 〉 = 〈φγ |Ĥ 2
h |φγ 〉 (39)

according to equation (33). The sum in equation (38) only includes terms four excitations
away from each other as results from equation (36). N is the maximum number of terms given
by equation (30) and criteria below. Replacing (38) in (39) and using equation (35) we have

.2 ≡ σ 2

E2
=

N∑
j=0

[
cj

√
(4j + 1)(4j + 2) + cj+1

√
(4j + 3)(4j + 4)

]2
/ N∑

j=0

c2
j (40)

with E = (h̄λ/2)
√

〈(ẋf ′)2〉, and where 〈〉 indicates the time average over the orbit. From
the last relation we see immediately that . is a universal function which only depends on N ;
that is, it is independent of the system and of the particular PO. We will call it the universal
dispersion.

Using the well known method of Lagrange’s undetermined multipliers, the minimum value
of . is obtained from the following system of equations:

Aj−1cj−1 + (Bj − .2)cj + Aj cj+1 = 0 (41)

for j = 0, . . . , N , with

Aj =
√
(4j + 1)(4j + 2)(4j + 3)(4j + 4)

Bj = (4j − 1)4j + (4j + 1)(4j + 2).
(42)

Actually, this system of equations represents the following eigenvalue problem:

(Ĥh/E)2φγ = .2φγ (43)

with

Aj = 〈ψ(4j)γ |Ĥ 2
h /E2|ψ(4j+4)

γ 〉
Bj = 〈ψ(4j)γ |Ĥ 2

h /E2|ψ(4j)γ 〉. (44)

By replacing recursively the coefficients in (41) (putting cN in terms of cN−1 and so on),
we obtain an expression for .2 in the continued-fraction form

.2 = B0 − A2
0

(B1 − .2)− A2
1

(B2−.2)−···− A2
N−1

(BN−.2)

(45)

which can be solved self-consistently by setting . = 0 as the initial value on the left-hand side
of equation (45). The convergence of this problem is exponential and the solution is reached
in a few steps.

Now, taking c0 = 1, there results c1 = −(B0 − .2)/A0 and the recursive relation

cj+1 = −Aj−1cj−1 + (Bj − .2)cj

Aj
(46)

for j = 1, . . . , N − 1. In this way we have obtained the fundamental scar function which
consists of even transverse excitations. A similar construction can be done with odd excited
resonances: ψ(1), ψ(5), ψ(9), . . . . In this case the same relations are valid if we replace 4j by
4j + 1 in equations (38), (40), (42) and (44).

In order to obtain asymptotic expressions for . and the coefficients cj as N → ∞, we
define a continuous function c(z) in the range 0 < z � 1, so that

c(zj ) = (−1)j cj with zj ≡ j/(N + 1).
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Then, the recursive relation (41) transforms into the following ordinary differential equation:

4z2 d2c(z)

dz2
+ 8z

dc(z)

dz
+

(
1 +

.2

4

)
c(z) = 0 (47)

restricted by the boundary condition c(1) = 0 (because cN+1 = 0). To obtain equation (47),
we have expanded the roots in equation (42) by assuming j � 1, so the differential equation
is a poor approximation to the recursive relation for z = O(1/N).

A positive well behaved solution of equation (47) is given by

c(z) = − sin[(./4) ln z]√
z

. (48)

Actually, we have obtained numerically that an improved expression for the coefficients, which
corrects the error of the first ones, is given by

cj = (−1)j (1 − β/j)c(zj ) (49)

with β 
 (0.132 ± 0.003)(1 − 1/N)/ln1/4(N + 1) (this expression was verified in the range
1 � N � 105). The analysis shows that the error of equation (48) is very small and limited to
the first coefficients.

Equation (48) provides the coefficients cj for j � 1 (for simplicity, we do not use the
improved expression of equation (49)). The value of c0 is derived directly from (41) in terms
of c1; that is, (1 − .2/2)c0 = −√

6c1.
With the coefficients at hand, we evaluate the sums in equation (40); in terms of integrals

for j � 1. Moreover, defining u ≡ −(./4) ln z, integrals are solved explicitly. For instance,

1

N

N∑
j=0

c2
j 
 6 sin2(u1)

(1 − .2/2)2
+

2

.

(
u1 − sin(2u1)

2

)
(50)

with u1 = (./4) ln(N + 1). Then, after some algebra equation (40) takes the following simple
form:

cot(u1) = 3./(2 − .2). (51)

From this equation there results an expression for .(N). If . → 0 for N → ∞, the right-
hand side of equation (51) goes to zero and then u1 goes to π/2, so . goes to zero as 2π/ lnN
in accordance with the starting assumption. This asymptotic behaviour is exact because the
contribution of the first coefficients (which have a small error) in equation (40) goes to zero
as N → ∞. On the other hand, for N = 0 it turns out that u1 = 0 and from (51) we obtain
.2 = 2, which is the exact value. However, the evaluation of. forN � 1 is not wholly correct,
although of course the error goes to zero for large values of N . To improve the solution for
low values of N , we change the previous expression of u1 by

u1 = (./4) ln(N/α + 1). (52)

This new expression is justified because the N = 0 case is guaranteed for any α > 0 and
the asymptotic behaviour does not change. We can consider that α introduces an effective
lower limit of integration, when the sums in equation (40) are approximated by integrals, in
order to improve the approximation and to correct the error of the first coefficients. By taking
α 
 1.35, the N = 1 case is corrected, and equation (51) gives good values of . for all N .

An explicit expression for. is obtained from equation (51) by writing u1 in terms of. and
expanding it around . = 0. By taking only the first three terms of the asymptotic expansion,
we obtain the following expression (valid for the fundamental or even scar function):

.(N) 
 2π

A− 6π2/A2
(53)
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Figure 5. Plot of . against ln(N + 1). Symbols ((+) for the even scar function and (×) for the
odd one) correspond to the exact coefficients numerically obtained with equation (45) and curves
show the behaviour of expressions given in equations (53) and (54). The agreement is excellent.

with A = 6 + ln(N/1.35 + 1).
For odd scar functions, equations (47) and (48) are exactly the same, (1 − .2/6)c0 =

−√
10/3c1 and cot(u1) = 5./(6 − .2). The corresponding explicit expression is given by

.odd(N) 
 2π

A′ − (70π2/34)/A′2 (54)

with A′ = 10/3 + ln(N/1.95 + 1). .2 = 6 forN = 0, and it goes to zero as 2π/ lnN for large
N , adopting the same asymptotic behaviour as the even case. Figure 5 shows the excellent
fit of the obtained solutions (equations (53) and (54)) with the exact numerical computation
derived from equation (45).

The scar functions studied so far have zero mean transverse energy. They are related to
the solutions given in [9] with zero energy. In order to obtain solutions with mean transverse
energy βE , it is necessary to solve the following eigenvalue problem:

(Ĥh/E − β)2φγ = .2φγ . (55)

In this case, the excitationsψ(2),ψ(6),ψ(10), . . . , (ψ(3),ψ(7),ψ(11), . . . , for odd scar functions),
with pure imaginary coefficients, are incorporated into φγ (equation (38)) in order to solve
equation (55). Of course, the dispersion increases with respect to the β = 0 case. Explicit
expressions will be given in [21].

6. Numerical results

6.1. The Bunimovich stadium billiard case

In this section we provide an application of this new construction to the Bunimovich stadium
billiard, a classically chaotic system [22]. Taking the set of POs shown in figure 6, we have
calculated its corresponding scar functions (the even and odd scars, always referenced as
‘number of the orbit-0’ and ‘number of the orbit-1’ correspondingly). They are displayed
in both configuration and phase space (Husimi) representations in figures 7 and 8. Figure 7
shows that self-focal points influence the shape of these functions; scar functions diverge (in
agreement with [6]) with h̄ in these points. This is the main difference between scar functions
and the resonances employed to construct them (for a comparison see figure 9). This feature
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Figure 6. Orbits used in the present construction. Numbers appearing below each of them are used
to label the corresponding scar functions.
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Figure 7. Linear density plots of scar functions in configuration space. Scar functions are labelled
as indicated in the main text (0 for the even state and 1 for the odd one). Numbers appearing below
are the Bohr–Sommerfeld values of the wavenumber.

can be better understood with the aid of the Husimi representation (figure 8). This behaviour
is easily explained because now it can be clearly seen that the function sticks to the stable and
unstable manifolds of each orbit. These latter are represented by the curves passing through
the fixed points associated with the POs in our surface of section in Birkhoff coordinates. Dots
indicate the locations of the zeros of the Husimi functions. We have chosen scar functions
with their wavenumbers nearest to 100. In figure 9 we show the first four out of a total of
five resonances needed to construct the scar function ‘2–0’, i.e. the even scar corresponding to
the orbit labelled 2. It is important to note that the vacuum state has already been constructed
in [2] and that the explicit construction of its excitations for the case of the stadium will be
reported in [21].
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Figure 8. Linear density plots of Husimi distributions corresponding to the scar functions displayed
in figure 7. A logarithmic scale of uniform level ratio 1/e from the maximum downwards was used
in the contour plots. Different levels of grey, uniformly distributed, complete this picture. Dots
are located at each zero of the Husimi functions. Solid curves passing through the fixed points
represent the stable and unstable manifolds.

n=74   m=0 n=62   m=4

n=50   m=8 n=38   m=12

(a) (b)

(c) (d)

Figure 9. Linear density plot for four of the five resonances needed to construct the scar function
2–0. (a) n = 74, m = 0 (the vacuum state). (b) n = 62, m = 4 (first contributing excitation).
(c) n = 50, m = 8. (d) n = 38, m = 12.
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Table 1. Numerically calculated dispersion σγ versus the semiclassically predicted σk . The
number of each scar function (coding explained in the main text) is displayed in the first column.
The semiclassical and numerical values for the dispersion appear in the second and third columns;
the ratios are displayed in the fourth one. The last column shows the sum of the squared overlap
coefficients used in the calculation.

Scar function σk σγ σk/σγ =i |di |2

1–0 0.213 0.206 1.03 0.994
1–1 0.332 0.325 1.02 0.981
2–0 0.193 0.184 1.05 0.998
2–1 0.311 0.292 1.07 0.995
3–0 0.187 0.179 1.04 0.987
3–1 0.294 0.266 1.10 0.986
4–0 0.201 0.206 0.98 0.996
4–1 0.311 0.295 1.05 0.991
5–0 0.191 0.185 1.03 0.994
5–1 0.298 0.298 1.00 0.983
6–0 0.197 0.190 1.04 0.987
6–1 0.309 0.290 1.07 0.982

One of the most important properties of scar functions, to test the semiclassical expressions,
is the dispersion. In order to evaluate numerically the dispersion of scar functions, we have
calculated the overlaps of their normal derivatives (over the boundary of the stadium) with
the exact eigenfunctions. We have taken a known norm [23] for normal derivatives over
the boundary, which gives the expression for the overlap 〈ψ1|ψ2〉 = ∫

∂nψ1∂nψ2(rn/2k2) ds,
where rn = �r.n̂with n̂ the outgoing unit normal vector and s the arclength. The evaluation of the
overlaps has been performed inside a window of the spectrum centred at the Bohr–Sommerfeld
wavenumber kBS for the corresponding scar function. Then, the dispersion in the k-spectrum
is σ 2

γ = ∑
i |di |2(ki − kBS)

2, where ki is the eigen-wavenumber of the eigenfunction ψi , and
di = 〈φγ |ψi〉. Table 1 shows the semiclassically predicted value σk = σk2/(2k) = .(N)λ/2
for the scar functions in the second column. The third column shows the corresponding values
of the numerically calculated dispersion σγ . Finally, the fourth one displays the ratios σγ /σk .
It is clear that the overwhelming majority of them is highly accurate. In figure 10 we show
the plots of the Gaussian smoothed curves made from the squared overlap coefficients. The
smoothing was done by including a Gaussian factor in each di value. The final curve is the
sum

fsm(k) = ?
∑
i

|di |2 e−(k−ki )2/(2σ 2)
/ √

2πσ 2

where ? = 1/ρk = 2π/(Ak) is the mean level spacing, A being the area of the billiard and
ρk the mean level density. In performing the smoothing, dispersion σ was taken such that
σ 2 = σ 2

γ /10, which is an intermediate value in the sense that while avoiding fine structures
that could hide the general (well predicted) behaviour it reveals the underlying complexity.
In fact, many interesting phenomena can be investigated with the aid of finer structure scales
and we are working in that direction at the moment. To conclude, these curves can be directly
compared with the also plotted theoretical Gaussian curves

fth(k) = ? exp [−(k − kBS)
2/(2σ 2

k )]
/ √

2πσ 2
k .
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Figure 10. Solid curves correspond to the smoothed squared overlaps of each scar function with
the exact eigenfunctions (fsm) versus wavenumber k. Dashed curves represent the theoretical
Gaussians fth.

6.2. Study of the transverse component of the scar function

In this part we will proceed with the numerical analysis of scar functions restricted to a given
transverse section, that is for a fixed value of x. We will consider the situation where ξu = êy
and ξs = êpy , in order to compare with the results of [9]. This implies that yu = 1, pu = 0,
ys = 0 and ps = 1 (see equations (9) and (10)). With them, there results from equation (14)
the Hamiltonian (setting λẋf ′/J = 1) Hh = ypy , and its quantization Ĥh = (ŷp̂y + p̂y ŷ)/2
from equation (37).

The curves of constant energy, with E > 0 or E < 0, are hyperbolas in phase space
(py = E/y). For E = 0, the motion occurs on the manifolds. There are two eigenfunctions
for each value of the energy, one of them symmetric and the other antisymmetric with respect
to the origin y = 0. The general expression for y > 0 is exp(iE ln y)/

√
y [24] (taking

h̄ = 1), and we stress that the semiclassical prescription of equation (16) gives the same result,
where S = E ln y and ẏ = y. These solutions are not square integrable; i.e. they cannot be
normalized.

For our construction we have Q = 1 and P = i. Later, equation (28) reduces (up
to a global phase independent of m) to the eigenfunctions of the one-dimensional harmonic
oscillator

ψ(m)(y) = e−imπ/4

√
2mm!

Hm(y)
e−y

2/2

π1/4
. (56)
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Figure 11. Husimi plots of the fundamental or even scar functions constructed for the Hamiltonian
H = ypy . We use the same scales of figure 8 for the contour plots and the levels of grey. (a) Here
the number of excited terms in the series is N = 1. (b) N = 3. (c) N = 7. (d) N = 10. The dots
correspond to their zeros while the crosses are placed at the zeros of the symmetric eigenfunction.

The greater the number of excitations included, the better the approximation to the
corresponding eigenfunction, but we must remember that in the context of our construction this
number is limited by the transverse areaAlin of phase space where the linearization is valid (see
section 4). In figure 11 we can see the Husimi plots for the even scar functions associated with
this Hamiltonian. The same logarithmic scale as previously used in the Bunimovichh stadium
example has been taken for the contour lines, supplemented by a linear density plot. Both
of them show that the maximum intensity of the functions lies along the stable and unstable
manifolds (the vertical and horizontal axes respectively) associated with the hyperbolic fixed
point at the origin. We have selected some examples of scar functions constructed with a
number of terms N = 1, 3, 7 and 10 (resonances) in the corresponding sums. The number of
their zeros (denoted by dots) is equal to four times this value (it is useful to have in mind that
we are showing only a quarter of the full phase space; the remaining parts of this picture can
be easily obtained by reflecting with respect to the horizontal and vertical axes). This is so due
to the fact that the Hermite polynomials involved in these expressions have a maximum order
equal to 4N , this being the numberm of transverse excitations of the resonances. On the other
hand, we have also plotted the zeros of the symmetric eigenfunction with E = 0 (these zeros



4546 E G Vergini and G G Carlo

Figure 12. Husimi plots of the odd scar functions constructed for the Hamiltonian H = ypy . We
use the same scales as in the previous figure. (a) N = 1. (b) N = 3. (c) N = 7. (d) N = 10.
The dots correspond to their zeros while the crosses are placed at the zeros of the antisymmetric
eigenfunction.

were investigated in [9]). It can be seen that the zeros of each scar function are close to those
corresponding to the exact ones in the relevant region, whilst they differ in the region where
the functions are exponentially small. Moreover, as the number of the terms included in the
sum grows, the number of coincident zeros and their accuracy also increases. Nevertheless, in
the exponentially small region, they go away from the cuve where all the exact ones lie, doing
this symmetrically with respect to this curve in a ‘V’-shaped form (the number of zeros also
grows on this ‘V’). We want to underline the great similarity between the even scar functions
and the symmetric eigenfunction because the positions of the zeros of these functions are a
very sensitive measure of any difference or perturbation. Moreover, in figure 12 we show the
same type of plot but for the odd scar functions together with the zeros of the antisymmetric
eigenfunction. In this case, the description is similar to the even case but with the inclusion of
a zero at the origin.

Finally we want to note that the solutions for any other configuration of the unstable and
stable manifolds (as could happen for different points along a periodic trajectory) will behave in
the same way as in the previously discussed example. The only important point to underline is
that the manifolds will change their position accordingly with a symplectic transformation, and
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the new transverse functions will be a metaplectic transformation [13] of the functions shown
before. In order to clarify this idea we can take another simple case where ξu and ξs are now
rotated by π/4 in the anticlockwise sense with respect to the previous case. This implies that
ξu = (êy + êpy )/

√
2 and ξs = (−êy + êpy )/

√
2. Replacing these new values in the hyperbolic

Hamiltonian we obtainHh = (p2
y−y2)/2 from equation (14) and its quantization Ĥh = (p̂2

y−
ŷ2)/2 from equation (37). In this caseQ = (1−i)/

√
2 andP = (1+i)/

√
2. Then, we must add

the factor exp [imπ/4] to the transverse component of the excitations written in equation (56).

7. Conclusions and final remarks

The use of scar functions instead of vacuum states in the theory of short POs introduces strong
conceptual and practical differences. From the theoretical point of view, notice in the first place
that the overlap between a scar function and its related vacuum state goes logarithmically to
zero with h̄. This is derived directly from equation (50). The square of the overlap is given by
the first right-hand side term (which represents c2

0/N ) divided by 1
N

∑N
j=0c

2
j . In this respect,

scar functions acquire a wholly different character as h̄ goes to zero. They are not simply a
sophisticated version of vacuum states, but they mimic the classical structure which organizes
the short-time dynamics, and then we hope phase space will be covered more efficiently and
uniformly.

Of course, it is possible to justify quantitatively the use of scar functions. In section 5 we
have proved that the universal dispersion. goes to zero with h̄ (again logarithmically). So, scar
functions are much more localized in energy than vacuum states. In fact, they converge formally
on each transverse plane (to the orbit), to the eigenfunctions of the quadratic Hamiltonian
derived from the return map (the eigenfunctions investigated in [9]). Notice that they are not
eigenfunctions of the system. We can illustrate this point as follows. If σρ goes to zero,
the wavefunction goes to an eigenfunction, but σ behaves like h̄/| ln h̄|, ρ = O(h̄−1) for the
transverse direction (one degree of freedom) and ρ = O(h̄−2) for the system.

Another justification (perhaps the same) for the use of scar functions is that they acquire
in the semiclassical limit the hyperbolic structure characteristic of unstable orbits. The work
of Percival [25] teaches us that classical phase space structures dominate the semiclassical
behaviour. Following the same philosophy, we claim that in the semiclassical limit the unique
proper basis of wavefunctions to obtain chaotic eigenfunctions is the basis of scar functions
(constructed with the shortest POs of the system [1]).

In the second place, notice that matrix elements between scar functions around different
POs go to zero at most as a power of h̄ (using vacuum states they decrease exponentially with
h̄ [1]). We are thinking about smooth operators which do not destroy the hyperbolic structure,
for instance the Hamiltonian operator. The application of the Hamiltonian to a scar function
has a Husimi distribution similar to that observed in figure 8 but with two (three) zeros at
each fixed point for the even (odd) case. Then, the overlap does not decrease exponentially
because the two hyperbolic structures (related to the considered POs) are always in contact;
on a Poincaré surface of section the intersection points are so-called heteroclinic.

On the practical level, we have learned that the contribution of POs to eigenfunctions
is not restricted to the vacuum contribution. For example, in figure 13(a) we show a highly
excited eigenfunction of the stadium billiard. This state is the linear combination of around
1000 plane waves; so, the contribution of each plane wave is around 0.1%. The state has a scar
of orbit two (see figure 6). The vacuum contribution of this orbit (see figure 13(b)) reproduces
6.2% of the state, while the corresponding scar function (see figure 13(c)) 8.6%. Moreover,
figure 13(a) shows clearly the self-focal point appearing in the scar function.
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(a)

(b)

(c)

Figure 13. Linear density plot of: (a) the odd–odd eigenfunction at k = 1000.416 48 for the
stadium billiard; (b) the vacuum state of orbit two and (c) the scar function of orbit two.
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Figure 14. Parallelogram with symplectic area corresponding to the definition given in remark (i),
i.e. an upper limit of the area where the linear regime works. The inner parallelogram of unit area
(J ) defined by the stable and unstable directions is similar to the exterior one.

Finally, we want to point out some remarks and ideas that are relevant for further extensions
and applications of the construction developed throughout this paper:

(i) The decomposition of the motion in the vicinity of a PO, into a periodic and a hyperbolic
one, depends on the function f (x) (see section 2). This function, that determines the
dilation–contraction rate along the manifolds, was only defined at x = 0 and x = L

(f (0) = 0 and f (L) = L). A reasonable way of imposing further conditions on f is
by requiring that the projections of ξu(xi) = ξs(xi) on each axis are equal in absolute
value at all the points xi . At these points the manifolds are symmetrical with respect
to the axes y and py (see section 2). These conditions are based on the fact that
position and momentum have different physical meaning. For this reason they do not
resist symplectic transformations of the transverse axes y and py . Nevertheless, once the
function f is defined, the constructed resonances are invariant with respect to symplectic
transformations of the transverse variables.
The motion can be decomposed in a symplectic invariant fashion if we have information
on the nonlinear regime in the vicinity of the PO. Figure 14 shows a transverse section at
a given value of x, where the manifolds in the nonlinear regime are included. Drawing
straight lines tangential to one of the manifolds and parallel to the linear direction of the
other, a parallelogram is defined. Then, it is possible to select ξu(x) and ξs(x) such that
these vectors define a parallelogram (with unit area) similar to the previous one. Having
these vectors for all values of x, F(x) is automatically defined in a symplectic invariant
way.
On the other hand, the area of the defined parallelogram is an upper limit of the area where
the linear regime works, and we expect that this area goes to zero exponentially with the
period of the orbit. In such a case, scar functions of short POs will have the smallest
universal dispersion. This is a quantitative justification of the central role played by the
shortest POs in the theory of short POs.

(ii) Using heuristic arguments, Kaplan and Heller [12] have proposed a semiclassical con-
struction of localized wavefunctions on fixed points in maps. These functions are similar
to the even scar functions (restricted to a section) presented in this article. Moreover, their
approach can be extended to fluxes by using the decomposition of the transverse motion
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explained in section 2. However, we stress that our construction has the advantage of
providing explicit expressions.

(iii) The scar functions are eigenfunctions of Ĥ‖ + Ĥp which minimize the dispersion of Ĥh.
On the other hand, the semiclassical theory of short POs [1, 2] gives a recipe to obtain
eigenfunctions of Ĥ‖ + Ĥp + Ĥh as a linear combination of scar functions of short POs. If
H‖ +Hp +Hh were a quadratic approximation of H (see equation (15)) in the vicinity of
each short PO, the error of the obtained semiclassical eigenfunctions would be O(h̄), as
discussed after equations (20) and (33). However,H‖ +Hp +Hh is a synchronized motion
approximation ofH (it is quadratic in the transverse direction), and then the semiclassical
eigenfunctions have an error O(√h̄) as explained in appendix A.

(iv) The universal dispersion .(N) decays very slowly in the extreme semiclassical limit (the
behaviour 1/ lnN was predicted in [12] using simple arguments). From reviewing a great
number of exact eigenfunctions of the Stadium billiard, we observed that odd scar func-
tions are not as relevant as even ones. This fact can be understood by looking at figure 5,
where the odd universal dispersion is greater than the even one, and they are comparable
only for very large values of N .

(v) Recently, based on trace formulas, Wisniacki and Vergini [26] have constructed smooth
functions highly localized in the neighbourhood of POs using only quantum informa-
tion. They are obtained by Fourier transforming the probability density of eigenfunctions.
These smooth functions show an impressive similarity with a combination of the even
and odd scar functions constructed in this article. We can say that they are a coherent
contribution of even and odd scar functions when µ is an even number; that is, when
the linearized motion is hyperbolic without reflection. In this case, even and odd scar
functions quantize at the same energies. When the motion is hyperbolic with reflection
(µ is an odd number), odd scar functions quantize at the anti-Bohr energies of the even
case, and then even and odd scar functions contribute with opposite sign.

(vi) This new construction provides a precise definition of a scar function and will be very use-
ful for quantifying scarring of individual states and studying scar phenomena in general.
This a subject that has received much attention in the last years [27]. For instance, by
reducing the degree of smoothing used to construct figure 10, many substructures appear,
having much information regarding the interaction of these classically motivated objects.
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Appendix A

In this appendix we consider a Hamiltonian of the form kinetic plus potential energy with
the configuration space being the Euclidean plane. Then by taking the solution provided in
section 3, which lives in the vicinity of the orbit γ , as the eigenfunction of the corresponding
quantum Hamiltonian, we will be able to determine that the error involved in the semiclassical
approximation is of order

√
h̄. In section 3 we obtained an error of order h̄ after neglecting

some terms of the Hamiltonian in order to have a synchronized motion in the neighbourhood
of the orbit.

We use the curvilinear coordinate system defined in section 2. A point in the vicinity of
the orbit (in configuration space) is given by �r = �M(x)+yêy , where �M(x) describes the curve
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depicted by the orbit itself and yêy a transverse displacement from it. Then the velocity is
�̇r = ẋêx + ẏêy + ẋyêx/ρ(x), where ρ(x) is the radius of curvature of the trajectory at x. Later,
the Lagrangian is L = m(ẋ2g2 + ẏ2)/2 − V (x, y), with g = 1 + y/ρ(x), and the Hamiltonian
in curvilinear coordinates takes the form

H = 1

2m
(p2
x/g

2 + p2
y) + V (x, y)

where px ≡ mg2ẋ(x, y) and py ≡ mẏ.
For this Hamiltonian, px = mẋ and py = mẏ = 0 on γ . Then, it turns out that

0 = −ṗy = − p
2
x

mρ
+
∂V

∂y
(x, 0) (A.1)

on γ . Moreover, equation (1) takes the form

−ṗy =
(

3
p2
x

mρ2
+
∂2V

∂y2
(x, 0)

)
y. (A.2)

The quantum Hamiltonian in curvilinear coordinates is [17]

Ĥ = − h̄2

2mg

(
∂

∂x

1

g

∂

∂x
+
∂

∂y
g
∂

∂y

)
+ V (x, y)

and we are going to show that

(Ĥ − E)ψ(x, y) = O(h̄3/2) (A.3)

where

ψ(x, y) = e(i/h̄)[S(x)+y
2P(x)/2Q(x)]/

√
px(x)Q(x).

Taking into account that y = O(√h̄), we can isolate each order in h̄ of equation (A.3) as
follows:

h̄0 :
p2
x

2m
+ V (x, 0)− E = 0

h̄1/2 : y

(
− p

2
x

mρ
+
∂V

∂y
(x, 0)

)
= 0

h̄1 :
y2

2

(
3p2

x

mρ2
+
∂2V

∂y2
(x, 0) +

ẋP ′

Q

)
+ (y2P/Q− ih̄)(P/m− ẋQ′)/2Q = 0.

The h̄0 order is zero if E = Eγ . The next order, h̄1/2, is zero due to equation (A.1). Using
that ẋQ′ = Q̇ and P/m = Q̇, the last term of h̄1 is zero. Moreover, the parenthesis of the
first term is zero because ẋP ′ = Ṗ and Ṗ /Q = −3p2

x/mρ
2 − ∂2V/∂y2(x, 0) according to

equation (A.2).
In order to eliminate the term h̄3/2 of equation (A.3), it is necessary to include corrections

of order
√
h̄ in the solution.

Appendix B

The purpose of this appendix is to give a demonstration of equation (28). We can accomplish
this by means of an inductive process. The casem = 0 is trivial. Using the definition (27) and
equation (28), we have

ψ(m+1) = 2†

√
(m + 1)

e−imφ

√
2mm!

Hm(ξ)ψ
(0)
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where ξ = y√J/h̄/|Q|. Then, equation (28) is valid for the case m + 1 if and only if

Hm+1(ξ)ψ
(0) =

√
2eiφ2†Hm(ξ)ψ

(0).

After applying 2† and taking into account that ei(φ+η) = Q(x)/|Q(x)|, it turns out that

Hm+1(ξ) = 2ξHm(ξ)−H ′
m(ξ)

which is valid for Hermite polynomials [20].
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